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We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing
segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present
vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous
counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation
theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the
anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show
that they terminate at values of the coupling strength which are larger for more extended solutions. The
dynamical development of relevant instabilities is also monitored in the case of unstable solutions.
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I. INTRODUCTION

In the past two decades, the number of applications of
discrete, nonlinear dynamical models has increased dramati-
cally. A diverse set of applications has emerged, ranging
from the nonlinear optics of guided waves in inhomogeneous
optical structures �1,2� and photonic crystal lattices �3,4� to
atomic physics and the dynamics of Bose-Einstein conden-
sate �BEC� droplets in periodic �optical lattice� potentials
�5–8� and from condensed matter, in Josephson-junction lad-
ders �9,10�, to biophysics, in various models of double-
stranded DNA �11,12�. This broad span of research areas and
corresponding applications has now been summarized in a
variety of reviews �13–17�.

A model that has drawn a particular focus among these
areas of applications is the so-called discrete nonlinear
Schrödinger equation �DNLS� �16�. This model was first pro-
posed in the context of nonlinear optics, where it describes
beam dynamics in coupled waveguide arrays �18,19�, but is
equally applicable in other settings, such as the dynamics of
BEC’s confined in deep optical lattices �8,20�. The relevant
model involves the nearest-neighbor coupling between adja-
cent waveguides �wells of the optical lattice in BEC’s� and
the local nonlinear self-action induced by the Kerr effect in
each waveguide �or the mean-field interatomic interaction in
the condensate setting�.

Typically, the above setup is homogeneous in that all
waveguides or wells are identical. However, recently there
has been a surge of activity motivated by the experimental
tunability of the properties of individual waveguides and
wells. In particular, in the optical setting, the interaction of
discrete solitary waves with structural defects was examined
in �21�, while “nonstandard” solitary waves �discrete gap
solitons� were observed in binary waveguide arrays �22,23�.
This activity has been recently reviewed in �24�, discussing
various aspects of “optics in nonhomogeneous waveguide
arrays.”

On the BEC side, there are also similar developments
involving not only the �attractive or repulsive� localized

“defect” action of a laser beam on the condensate �25,26�,
but also the potential of creating the so-called “superlattice”
structures by means of the superposition of optical potentials
of different periodicity �27�.

In this context of inhomogeneous nonlinear dynamical
systems, we propose here a setting, which we illustrate to
have drastically different dynamical behavior than that we
would expect from its homogeneous counterparts. In particu-
lar, we impose a spatial pattern on the nonlinearity, having
the form of an “interface” between a set of defocusing Kerr
waveguides on the one end and a set of focusing Kerr
waveguides on the other, separated by a “transient” layer
�interface� of a waveguide bearing intermediate properties
between the two segments above. This is, in some aspects,
reminiscent of the recent proposition in the context of BEC’s
of spatially dependent nonlinearities �see, e.g., �28–30� and
references therein�. We show that this setting already pre-
sents a wealth of static and dynamical behavior which is very
different than its homogeneous analog. Notice that the
present setup bears also some resemblances to the recently
proposed fiber guide array resonator of �31� �where two fo-
cusing patches of waveguides straddle a defocusing patch
thereof�. Another recently explored setting �experimentally
as well as numerically� with some similarities to the present
one is that of the so-called surface solitons �32�, where a
waveguide lattice interfaces with a continuous medium.

We focus on the localized, solitary-wave excitations in the
vicinity of the interface. Starting from the so-called anticon-
tinuum limit of zero coupling �33�, we show that the exis-
tence and stability of the localized solutions in the vicinity of
the interface can be quantified for low couplings by means of
perturbation theory using the coupling constant as a small
parameter. As the coupling between the sites near the inter-
face increases, the phenomenology becomes drastically dif-
ferent, leading the relevant solution branches to a termination
through saddle-node bifurcations that would be absent in the
corresponding homogeneous limit. Perhaps equally surpris-
ingly, the more extended multipulse solutions appear to sur-
vive for larger values of the coupling than the single �or
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smaller size� pulse waves, which is again contrary to what is
expected from the homogeneous limit. In this stronger-
coupling regime, we investigate the properties of the relevant
solutions through numerical bifurcation theory and linear
stability analysis. We use direct numerical simulations to
illustrate the manifestations of the dynamical instabilities
of those among the solutions which are found to be dynami-
cally unstable. We believe that this example illustrates the
rich diversity of behavior that can be manifested in such
inhomogeneous settings.

Our presentation is structured as follows: In Sec. II, we
present the setup and analytical results, while in Sec. III, we
study the model numerically and compare with the analytical
results. Finally, in Sec. IV, we summarize our findings and
present our conclusions.

II. SETUP AND ANALYTICAL RESULTS

We consider an inhomogeneous lattice model described
by a discrete nonlinear Schrödinger equation of the
following form:

i
dun

dt
= − C�2un − dn�un�2un, �2.1�

where C is the coupling between the adjacent sites of the
lattice and �2un= �un+1+un−1−2un� is the discrete Laplacian.
The evolution variable is the propagation distance z in the
optical case and the time t in the BEC case; for notational
simplicity, we use t in what follows. The nonlinearity coef-
ficient dn �where n is the spatial index� is determined by the
intensity-dependent refractive index �in the context of optics�
or the s-wave scattering length �in the context of BEC’s� of
each waveguide �or optical lattice well for BEC’s�. The cen-
ter site d0 is assumed to have an intermediate value slightly
greater than zero. For all n�0, the refractive index is set to
the defocusing value dn=−0.9. For all n�0, the refractive
index is set to the focusing value dn=1.1. Note that d0 is set
to the average of these two values—i.e., to 0.1; it should also
be mentioned that the results reported below were found to
be typical of similar choices of the dn profile.

We focus our attention on standing wave solutions of
the form of un=ei�tvn, where � is the propagation constant
in optics or the chemical potential in BEC’s and vn is the
spatial �time-independent� profile, satisfying the steady-state
equation

G�vn,C� � �vn − C�2vn − dn�vn�2vn = 0. �2.2�

It can be easily seen �see, e.g., Refs. �34,35�� that, without
loss of generality, we can restrict ourselves to the class of
real solutions of Eq. �2.2�. In the anticontinuum �AC� limit—
i.e., for C=0—the solutions are immediately obtainable in
the form vn

2=�0, �

dn
�, provided that �dn�0 for all n. Using

this solution and setting to nonzero values only specific in-
dividual sites for n�0, we prescribe the configurations �in
the AC limit� for the various branches that will be subse-
quently examined analytically as well as numerically. The
selected configurations are as follows: lower first branch �1	,
single excited site at n=0; upper first branch �1,e	, excited

sites at n=0 and n=1 in phase; lower second branch �1,−e	,
excited sites n=0 and n=1 but out of phase; and upper sec-
ond branch �1,−e ,−e	, excited sites n=0 with positive sign
and n=1,2 with negative signs. Following the same pattern,
the remaining branches are lower third branch �1,−e ,e	,
upper third branch �1,−e ,e ,e	, lower fourth branch
�1,−e ,e ,−e	, upper fourth branch �1,−e ,e ,−e ,−e	, lower
fifth branch �1,−e ,e ,−e ,e	, and upper fifth branch
�1,−e ,e ,−e ,e ,e	.

On the numerical side, we analyze these branches using
the pseudoarclength continuation method �36�. This allows
us to trace the branches past fold points and has the signifi-
cant advantage that it automatically traces the unstable
branch corresponding to a certain stable branch. Further-
more, it gives a systematic and accurate way of computing
the turning point of the relevant saddle-node bifurcation as-
sociated with such folds. In particular, given a solution
�v�0 ,C0� of Eq. �2.2�, G�v� ,C�=0, and a direction vector

�v�̇0 , Ċ0�, one can determine �v�1 ,C1� by solving the following
system of equations:

G�v�1,C1� = 0,

�v�1 − v�0�v�̇0 + �C1 − C0�Ċ0 − �s = 0, �2.3�

where �s is a �small� arclength parameter. We use Newton’s
method to solve the system in Eq. �2.3� for �v�1 ,C1�:


 �

�v�
G

�

�C
G

v�̇0 Ċ0
�� v�1

�new� − v�0

C1
�new� − C0


= − � G�v�1,C1�

�v�1 − v�0�v�̇0 + �C1 − C0�Ċ0 − �s
 . �2.4�

The next �normalized� direction vector �v�̇1 , Ċ1� can be com-
puted by solving


 �

�v�
G

�

�C
G

v�̇0 Ċ0
��v�̇1

Ċ1

 = �0

1
 . �2.5�

To examine the linear stability of the stationary solutions
obtained as described above, we use the perturbation ansatz

un = ei�t�vn + �ane−i�t + �bnei�*t� , �2.6�

where � is a formal small parameter. By substituting Eq.
�2.6� into Eq. �2.1� and dropping higher-order terms, the fol-
lowing system of linear stability equations is obtained:

�an = − C�2an + �an − 2dn�vn�2an − dnvn
2bn

*,

�*bn = C�2bn − �bn + 2dn�vn�2bn + dnvn
2an

*. �2.7�

The numerical solution of the ensuing matrix eigenvalue
problem for the eigenfrequencies � and eigenvectors �an ,bn

*�
can be then used to characterize the linear stability �more
precisely the spectral stability� of the solutions. Since the
eigenvalues �eigenfrequencies� of the underlying Hamil-

MACHACEK et al. PHYSICAL REVIEW E 74, 036602 �2006�

036602-2



tonian system appear in quartets, to ensure a spectral insta-
bility it suffices for the above linear system to possess an
eigenfrequency with a nonzero imaginary part. When the so-
lutions are found to be unstable, we use a fourth-order, direct
integration scheme to examine the dynamical evolution of
the instability.

Having presented the main framework and numerical
methods, we now turn to some analytical results. Our analy-
sis will be based on perturbation theory from the anticon-
tinuum limit, using the coupling strength C as the small
parameter. In particular, we expand the solution as

vn = vn
�0� + Cvn

�1� + O�C2� . �2.8�

It is easy to check that the stability problem of Eq. �2.7�
can be rewritten for the eigenvalues �= i� in the Hamil-
tonian form

JH	 = �	 , �2.9�

where 	 is the infinite-dimensional eigenvector, consisting of
2-blocks of �un ,wn�T �the superscript T denotes transpose�,
where an=un+ iwn, bn=un− iwn for the eigenvector equations
�2.7�, J is the infinite-dimensional skew-symmetric matrix,
which consists of 2
2 blocks of

Jn,m = � 0 1

− 1 0
�n,m,

and H is the infinite-dimensional symmetric matrix, which
consists of 2
2 blocks of

Hn,m = ��L+�n,m 0

0 �L−�n,m
 .

The matrices �L+�n,m and �L−�n,m are, in turn, defined as

�L+�n,n = 1 − 3dnvn
2, �L−�n,n = 1 − dnvn

2,

�L±�n,n+1 = �L±�n+1,n = − C .

Similarly to the solution itself, the matrix H in the
neighborhood of the AC limit can be expanded as

H = H�0� + �
k=1

�

CkH�k�, �2.10�

where H�0� is diagonal with two blocks:

Hn,n
�0� = �− 2 0

0 0
, n � S, Hn,n

�0� = �1 0

0 1
 ,n � Z \ S ,

�2.11�

where S denotes the set of excited sites. Notice that in the
C=0 limit, each excited site corresponds to a pair of zero
eigenvalues in Eq. �2.9�, while each zero site corresponds to
a pair of eigenvalues at ±1.

Choosing for simplicity of exposition �and without loss
of generality� �+2C=1 in Eq. �2.2�, the solution of the
leading order perturbation problem in Eq. �2.8� is governed
by the following equation:

�1 − 3dn�vn
�0��2�vn

�1� = vn+1
�0� + vn−1

�0� . �2.12�

One can apply this, e.g., for the two-site solutions such as
�1,e	 and �1,−e	, to obtain the leading-order corrections

v0
�1� = −

1

2
�±� 1

d1
 , �2.13�

v1
�1� = −

1

2
�±� 1

d0
 , �2.14�

where the sign inside the parentheses corresponds to the
sign of excitation of the site indexed inside the square root.
Similarly, for three excited sites the expressions become

v0
�1� = −

1

2
�±� 1

d1
 , �2.15�

v1
�1� = −

1

2
�±� 1

d0
±� 1

d2
 , �2.16�

v2
�1� = −

1

2
�±� 1

d1
 . �2.17�

One can correspondingly generalize these expressions for an
arbitrary number of excited sites.

We now turn to the perturbed stability problem. The small
perturbation of size C cannot render the eigenvalues of order
O�1� unstable. Instead, the potentially “dangerous” eigenval-
ues for instability purposes are those which are located at the
origin of the spectral plane in the AC limit �corresponding to
the excited sites, as discussed above�. The perturbed form H1
of the matrix relevant to the stability problem can be easily
seen �from the perturbative expansion� to assume the form

Hn,n
�1� = − 2dnn

�0�n
�1��3 0

0 1
, Hn,n+1

�1� = Hn+1,n
�1� = − �1 0

0 1
 ,

�2.18�

while all other blocks of Hn,m
�1� are zero. If we consider the

�linearly independent� eigenvectors corresponding to zero
eigenvalues of H0, fn, then it was proved in �35� that in order
to obtain the leading correction to the �zero� eigenvalues of
the original problem, it is sufficient to consider the reduced
problem

M1c = �1c , �2.19�

where

�M1�m,n = �fm,H�1�fn� �2.20�

is an N
N matrix, with N being the number of excited sites.
Once the eigenvalues �1 of this reduced problem are ob-
tained, then the perturbed eigenvalues of the original prob-
lem are given by �=�C�1+O�C�, where �1=�2�1. It is
worthwhile to note here that the above-described analysis of
the stability problem also bears deep resemblances to a simi-
lar �finite-dimensional matrix� reduction for the breather sta-
bility problem performed for Klein-Gordon lattices in �37�
�see also �38��.
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One can then directly compute the matrix M, e.g. in the
two-site and three-site cases, as well as more generally, to
have the forms

�M�n,n = − 2dnvn
�0�vn

�1�, �M�n,n−1 = − cos��n−1 − �n� ,

�M�n,n+1 = − cos��n+1 − �n� .

One can then obtain the following predictions for the
leading-order eigenvalues of some of the branches discussed
above �we only explicitly present these predictions in the
two- and three-site cases�,

� = ± 2.69003�C , �2.21�

� = ± 2.69003i�C , �2.22�

for the �unstable� �1,e	 and �stable, at least for small C�
�1,−e	 modes, respectively. In the three-site case, we have
the following.

�i� For the branch �1,e ,e	, two real eigenvalue pairs

�1 = ± 1.277714�C, �2 = ± 3.098986�C . �2.23�

�ii� For the branch �1,−e ,e	, the same eigenvalue pairs as
above but multiplied by i �hence the branch is marginally
stable for small C�.

�iii� For the branch �1,e ,−e	, one real and one imaginary
pair in the form

�1 = ± 1.63075i�C, �2 = ± 2.428092�C . �2.24�

�iv� Similarly, the branch �1,−e ,−e	 has the same eigen-
values as �1,e ,−e	 but multiplied by i �so it is also always
linearly unstable�.

Notice that one can, in principle, expand this type of
analysis to any other configuration of interest.

We now turn to numerical results in order to examine the
validity of these theoretical predictions.

III. NUMERICAL RESULTS

Figure 1 summarizes our essential numerical results, pre-
senting the squared l2 norm of the solution �physically, the
power in optics or the rescaled number of atoms in BEC�
P=�n�un�2 for the various branches that we examined in our
computations. �For the explanation of the branches that are
shown, the reader is referred to Sec. II.� For convenience
herein P is scaled by a factor of 0.15. There are a number of
features in this bifurcation diagram which are in extreme
contrast with the corresponding homogeneous limit of this
system. First, the single-pulse branch in the vicinity of the
interface already terminates for quite small values of C; in
fact, it is the first branch to terminate in a saddle-node bifur-
cation with the two-site mode �1,e	. This is the analog of
what would be termed the “Page mode” in the setting of
intrinsic localized modes �ILM’s�. As the coupling increases,
the site with index n=1 starts becoming excited for the
single-pulse branch, eventually colliding �in configuration
space� with the two-site mode and annihilating each other. In
the homogeneous limit of a focusing medium both of these

branches would survive for any C, up to the continuum limit
of C→�. A similar phenomenology emerges for the so-
called twisted mode branch of �1,−e	, which, in turn, is also
linearly stable for small C; for larger C, it eventually
collides with the branch �1,−e ,−e	 and disappears in a
saddle-node bifurcation. The same is also true for the pair of
�1,−e ,e	 and �1,−e ,e ,e	 and for that of �1,−e ,e ,−e	 and
�1,−e ,e ,−e ,−e	 also shown in the figure. Another interesting
general trend illustrated in this diagram is that the more ex-
tended the branch �i.e., the more sites participating in the
nonlinear wave�, the larger the coupling strength for which it
persists. This is also contrary to what one would expect from
the homogeneous limit, where multisite solutions can only be
continued to a finite coupling which is typically larger for
more localized structures.

Figure 2 illustrates the details of the lower pair of
branches in Fig. 1. In particular, panel �a� shows the profile
of the modes and their corresponding stability for the stable
�1	 and unstable �1,e	 solutions. The continuation of the
branches �up to C=0.15 where they collide and disappear� is
shown in detail. The instability of the unstable two-site so-
lution is investigated in panel �b� through a direct simulation
showing its breathing evolution. In these types of numerical
experiments, throughout the text, the lattice is initialized
with the unstable configuration �without any additional per-
turbation�. The truncation error due to the finite accuracy of
the solution is eventually amplified to O�1�, manifesting the
instability of the configuration. Panel �c� reports the result of
the full numerical simulation �solid line� versus the theoret-
ical prediction �dashed line�, for both the instability eigen-
value of �1,e	 and the profile correction imposed by
Eqs. �2.13� and �2.14�. It is readily observed that, for
small values of C, the agreement between the analytical pre-
dictions and the numerical results is very good. Of course,
for larger C, the analytical results are expected to be less
successful due to the significance of higher-order corrections
neglected in our analysis.

Figure 3 is similar to Fig. 2, but for the second pair of
solutions in Fig. 1: namely, for �1,−e	 and its corresponding
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FIG. 1. Bifurcation diagram of the first five branches. Plot of the
solution’s scaled power P as a function of the continuation param-
eter C. Dotted lines represent unstable regions. Solid lines represent
initially stable regions.
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FIG. 2. �Color online� �a� Profiles of wave configurations and eigenfrequencies at the value of C=0.1 where the solid vertical line crosses
branch one in the center diagram. Upper left: wave configuration from lower half of branch one, segment �1	. Lower left: eigenfrequencies
of the linearization around this solution. Upper right: wave configuration from upper half of branch one, segment �1,e	. Lower right:
eigenfrequencies from the corresponding linearization. �b� Top: evolution of the maximum of the square modulus of the solution taken from
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space-time contour plot of the square modulus of the solution. �c� The top panel shows the most unstable eigenvalue of the two-site solution
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FIG. 4. �Color online� Panel �a� shows the profiles and eigenfrequencies of the third branch ��1,−e ,e	 on the left and �1,−e ,e ,e	 on the
right� for C=0.465. Panel �b� shows, for the three-site mode �1,−e ,e	, the dependence of its two eigenfrequencies against the analytical
predictions �dashed lines�. Panels �c� and �d� show, for each of the branches and for C=0.465, the dynamical evolution of the principal sites,
as well as the space-time contour plot of the square modulus.
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unstable companion �1,−e ,−e	. These branches disappear to-
gether in a saddle-node bifurcation for C=0.575. While
�1,−e ,−e	 is always unstable due to a real eigenvalue for any
C, the twisted mode is stable for small C, but becomes un-
stable for C�0.095 due to the collision of two imaginary
eigenvalue pairs with opposite Krein signature, leading to a
quartet of eigenvalues through a Hamiltonian Hopf bifurca-

tion �39�. Panel �a� of the figure illustrates the solution pro-
files, the bifurcation diagram, and the results of the stability
analysis. Panel �b� highlights the breathing evolution of the
twisted-mode state. Panels �c� and �d� compare the eigen-
value prediction of Eq. �2.22� with the full numerical result
�dashed versus solid lines� and the leading-order correction
for the two side modes, in the case of the left panel. In the
right panel, the eigenvalue predictions �one real and one
imaginary� for the �1,−e ,−e	 branch �dashed line� are also
compared to the corresponding numerical results �solid line�,
obtaining once again good agreement.

In Fig. 4, we examine the third pair of branches of Fig. 1:
namely �stable for small C�, �1,−e ,e	 and �always unstable�
�1,−e ,e ,e	. These branches, in turn, collide and disappear
through a saddle node for C=0.725. Panel �b� shows the
prediction �dashed line� versus the numerical results �solid
line� for the leading-order eigenvalues of the �1,−e ,e	 solu-
tion �discussed in the previous section�. The theory correctly
captures, at small C, the existence of two imaginary eigen-
values and their C1/2 bifurcation from 0, but is somewhat less
satisfactory quantitatively in this case. This branch becomes
unstable around C=0.08 due to the collision of one of these
eigenvalue pairs with one of opposite Krein signature, lead-
ing once again to a quartet of eigenvalues. The details of the
subsequent dependence of this unstable eigenvalue on C, for
both this branch and �1,−e	, depend also on the size of the
domain for reasons similar to those discussed in �40�. The
two bottom panels show the unstable evolution of the corre-
sponding solutions, illustrating an interesting phenomenon
particularly in the case of the �1,−e ,e	 branch. The dynami-
cal evolution favors the tunneling of the excitation from the
position of the interface to a nearby site �in this case, mainly
to n=2�. That is, the interface displaces the solution towards
a position where the environment is more conducive �being
surrounded by focusing sites� to the existence of a localized
pulse solution.

Defocusing excitations

So far, our discussion has been limited to the excitations
occurring on the focusing side of the interface. However, it
is, of course, possible to have similar excitations on the de-
focusing side of the interface. We now briefly discuss the
latter setting.

First, we note that in discrete nonlinear Schrödinger sys-
tems, there exists the so-called staggering transformation
vn= �−1�nun, which converts a focusing problem to a defo-
cusing one �and vice versa�, up to a shift in the excitation
frequency which can always be absorbed through a phase
transformation. Hence, upon using such a staggering trans-
formation, one realizes immediately that the phenomenology
of the interface problem should remain essentially similar if
the excitations emerge on the defocusing side of the inter-
face. The main difference emerging from the above transfor-
mation is that the on-site branch will collide with the
�1,−e	 branch �rather than with the �1,e	 one�, the �1,e	
branch colliding with the �1,e ,−e	 branch �rather than the
�1,−e	 colliding with the �1,−e ,−e	 one�. Thus, the modified
bifurcations and stability properties can be qualitatively
identified by means of this transformation.
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FIG. 5. �Color online� �a� The top panel shows the bifurcation
diagram of the scaled power P versus C for the first pair of
branches in the defocusing case with �=−1. Similarly to Fig. 1, the
solid lines denote the stable branches and the dotted lines the un-
stable ones. �b� The single site �left panels� and two-site, out of
phase �right panels� branches that eventually collide with each other
in the defocusing case are shown for C=0.045. The top panels show
the branches’ profile and bottom ones their respective stability. �c�
Similarly for the second pair of colliding branches: namely, the
two-site in phase and the corresponding three-site branch, both of
which are shown for C=0.085.
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However, for reasons of completeness we have also cor-
roborated the above statements with typical numerical com-
putations in the latter regime. We start by noting that for
excitations on the defocusing side of the domain, it is evident
from the anticontinuum limit that the excitation’s propaga-
tion constant � would have to be negative. Furthermore, for
the localized multisite excitations near the interface consid-
ered herein, we have used an appropriately modified form of
the inhomogeneous nonlinear coefficients dn, with dn=−1.1
and n�0, d0=−0.1 and dn=0.9 for n�0. The first two rel-
evant saddle-node bifurcations and the branches correspond-
ing to these are then shown in Fig. 5, confirming the above
predictions concerning the participating branches. We note in
passing the fact that the turning points �C�0.093 and
C�0.174, respectively, for the bifurcations shown in Fig. 5�
occur for different values of C than in the focusing case
which is due to the “renormalization” of the propagation
constant imposed by the staggering transformation.

IV. CONCLUSIONS

In the present paper, we have introduced a setting for the
study of the recent theme of inhomogeneous nonlinear lat-
tices in nonlinear optics �waveguide arrays� and Bose-
Einstein condensates �optical lattices and superlattices�. The
setting consists of an interface between defocusing and fo-
cusing �repulsive interaction and attractive interaction,
respectively� regions and a transient layer between the two.

We have focused specifically on the statics and dynamics
of coherent wave forms in the vicinity of this interface, and

we have found that their properties are dramatically modified
in comparison with those expected from the homogeneous
case. Some manifestations of these differences can be quan-
tified in the termination of the principal pulse branch �for
small couplings� or the more prolonged �in parameter space�
persistence of more extended structures in comparison with
more localized ones. Furthermore, we have shown that the
interface may induce a dynamical tunneling of the structures
towards locations more favorable for their existence. We
have also developed a systematic methodology based on the
adaptation of the considerations of �35� to inhomogeneous
settings and illustrated how to use these to develop a pertur-
bative treatment of the problem with excellent qualitative
and good quantitative agreement with the full numerical
results.

There are many interesting questions that are suggested
for the interface problem we have introduced. A prominent
one concerns the dynamical evolution of coherent structures
moving towards the interface and their interaction with
�transmission through, reflection from or trapping at� that
region.
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